CKM and Tri-bimaximal MNS Matrices in a SU(5) × ^(d)T Model

Mu-Chun Chen
University of California at Irvine

Based on work done in collaboration with K.T. Mahanthappa arXiv: 0705.714 [hep-ph]

Introduction

Neutrino Oscillation Parameters [Circa 2006]

$$U_{MNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\sin^2 \theta_{23} = 0.5 \ (0.38 - 0.64), \quad \sin^2 \theta_{13} = 0 \ (< 0.028) \qquad \sin^2 \theta_{12} = 0.30 \ (0.25 - 0.34)$$

• Tri-bimaximal neutrino mixing:

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \qquad \begin{aligned} &\sin^2 \theta_{\text{atm, TBM}} = 1/2 & \sin \theta_{13,\text{TBM}} = 0. \\ &\sin^2 \theta_{\odot,\text{TBM}} = \boxed{1/3} \\ &\tan^2 \theta_{\odot,\text{exp}} = 0.429 & \tan^2 \theta_{\odot,\text{TBM}} = 1/2 \end{aligned}$$

Tri-bimaximal Neutrino Mixing from A4

- even permutations of 4 objects (invariance group of tetrahedron)
- four in-equivalent representations: 1, 1', 1", 3
- successfully give rise to tri-bimaximal leptonic mixing:
 - ★ lepton doublets ~ 3
 - * RH charged leptons: 1, 1', 1"
- generalization to quark sector:
 - * no CKM mixing -- lack of doublet representations
 - * mass hierarchy -- need additional U(1) symmetry

Group Theory of (d)T

in-equivalent representations:

other: 2, 2', 2" \longrightarrow 2 + I assignments for quarks

generators:

$$S^2 = R, T^3 = 1, (ST)^3 = 1, R^2 = 1$$

• product rules:

$$1^0 \equiv 1, 1^1 \equiv 1', 1^{-1} \equiv 1''$$

$$1^{a} \otimes r^{b} = r^{b} \otimes 1^{a} = r^{a+b}$$
 for $r = 1, 2$ $a, b = 0, \pm 1$

for
$$r = 1, 2$$

$$a, b = 0, \pm 1$$

$$1^a \otimes 3 = 3 \otimes 1^a = 3$$

$$2^a \otimes 2^b = 3 \oplus 1^{a+b}$$

$$2^a \otimes 3 = 3 \otimes 2^a = 2 \oplus 2' \oplus 2''$$

$$3\otimes 3=3\oplus 3\oplus 1\oplus 1'\oplus 1''$$

- Symmetry: $SU(5) \times {}^{(d)}T$
- Particle Content $10(Q,\,u^c,\,e^c)_L$ $\overline{5}(d^c,\ell)_L$

	T_3	T_a	\overline{F}	H_5	$H'_{\overline{5}}$	Δ_{45}	ϕ	ϕ'	ψ	ψ'	ζ	N	ξ	η
SU(5)	10	10	5	5	<u>5</u>	45	1	1	1	1	1	1	1	1
(d)T	1	2	3	1	1	1′	3	3	2'	2	1"	1′	3	1

- only top mass allowed at renormalizable level
- need to break (d)T to generate all other fermion masses

$H_5T_3T_a$	ψ', ψ
	$\psi\phi, \ \psi\phi', \ \psi'\phi, \ \psi'\phi', \ \psi'\zeta, \ \psi'N, \ \psi N$
	$\psi^{3}, \ \psi\psi'^{2}, \ \psi\phi^{2}, \ \psi\phi'^{2}, \ \psi\phi\zeta, \ \psi\phi'\zeta, \ \psi'^{3}, \ \psi'\psi^{2}, \ \psi'\phi^{2}, \ \psi'\phi'^{2}, \ \psi'\phi'\zeta,$
	$\psi\phi N, \psi\phi' N, \ \psi'\phi N, \psi'\phi' N$
	$\psi\xi,\ \psi'\xi,\ \psi\xi^2,\ \psi\xi\phi,\ \psi\xi\phi',\ \psi\xi\zeta,\ \psi'\xi^2\ \psi'\xi\phi,\ \psi'\xi\phi',\ \psi'\xi\zeta,\ \psi\xi N,\ \psi'\eta,\ \psi\phi\eta,\ \psi\phi'\eta,\ \psi\xi\eta,$
	$\psi'\phi\eta,\;\psi'\phi'\eta,\;\psi'\xi\eta,\;\psi\eta,\;\psi\phi\eta,\;\psi\phi'\eta,\;\psi'\phi\eta,\;\psi'\phi'\eta,\;\psi\phi\eta,\;\psi\phi'\eta,\;\psi'\phi\eta,\;\psi'\phi'\eta$
$H_5T_aT_a$	ϕ , ϕ'
	$\phi'^2, \ \psi^2, \ \psi'^2, \ \phi\phi', \ \psi\psi'$
	$\phi^{3}, \ \phi^{2}\zeta, \ \phi\zeta^{2}, \ \phi'^{2}\zeta, \ \phi'\zeta^{2}, \phi\phi'\zeta, \ \phi\phi'^{2}, \ \phi'\phi^{2}, \ \phiN^{2}, \ \phi'N^{2}, \ \phi'^{2}N, \ \phi\phi'N, \ \phiN\zeta, \ \phi'N\zeta$
	$\xi, \ \xi^2, \ \xi\zeta, \ \xi N, \ \xi \eta, \ \xi^2, \ \xi \phi, \ \xi \phi', \ \xi^3, \ \xi^2 \zeta, \ \xi^2 \eta, \xi^2 \zeta, \ \xi N \zeta, \ \xi N \eta, \ \xi \zeta \eta, \ \xi \phi^2, \ \xi \phi \phi',$
	$\xi^2\phi,\ \xi^2\phi',\ \xi\phi N,\ \xi\phi\eta,\ \xi\phi\zeta,\ \xi\phi' N,\ \xi\phi'\eta,\ \xi\phi'\zeta,\ \phi^2\eta,\ \phi\eta^2,\ \phi\eta N,\ \phi\eta\zeta,\ \phi'\eta^2,\ \phi'\eta N,$
	$\phi'\eta\zeta,\phi\eta,\phi'\eta,\ \xi N^2,\ \xi\eta^2,\ \xi\zeta^2$
$H_{\overline{5}}^{\prime}\overline{F}T_{3}$	ϕ, ϕ'
	$\psi^2, \ \phi^2, \ \phi'^2, \ \phi'\phi, \ \psi'^2, \ \psi\psi', \ \phi'\zeta, \ \phi'N, \ \phi N$
	$\phi^3, \ \phi'^3, \ \phi^2\phi', \ \phi\phi'^2, \ \phi\zeta^2, \ \phi'\zeta^2, \phi\psi^2, \ \phi'\psi'^2, \ \zeta\psi^2, \ \zeta\psi'^2, \ \phi'\psi^2, \ \phi\psi^2,$
	$\phi N^2, \ \phi' N^2, \ \phi N \zeta, \ \phi' N \zeta, \ N \psi^2, \ \zeta \psi^2, \ \zeta \psi \psi', \ N \psi \psi'$
	$\xi, \xi^2, \xi N, \xi \zeta, \xi \eta, \xi \phi, \xi \phi', \xi^3, \xi^2 N, \xi^2 \zeta, \xi^2 \eta, \xi^2 \phi, \xi^2 \phi', \xi \phi^2,$
	$\xi\phi'^2,\ \xi\phi\phi',\ \xi\phi N,\ \xi\phi\zeta,\ \xi\phi\eta,\ \xi\phi' N,\ \xi\phi'\zeta,\ \xi\phi'\eta,\ \phi'\eta,\ \phi\eta^2,\ \phi\eta N,\ \phi\eta\zeta,\ \phi'\eta^2,\ \phi'\eta N,\ \phi'\eta\zeta,\ \eta\psi^2,$
	$\eta \psi'^2, \ \phi \eta, \ \phi \eta N, \ \phi \eta \zeta, \ \phi' \eta^2, \ \phi' \eta N, \ \eta \psi \psi'$
$H_{\overline{5}}^{\prime}\overline{F}T_{a}$	ψ, ψ'
	$\psi\phi',\ \psi'\phi,\ \psi'\phi',\ \phi\psi$
	$\psi\phi^2, \ \psi\phi\zeta, \ \psi'\phi\zeta, \ \psi\phi'^2, \ \psi'\phi'^2, \ \psi\phi\phi', \ \psi'\phi\phi', \ \psi\phi'\zeta, \ \psi'\phi'\zeta, \ \psi\phi N, \ \psi'\phi N, \ \psi\phi' N, \ \psi'\phi' N$
	$\psi\xi, \ \psi'\xi, \ \psi\xi^2, \ \psi'\xi^2, \ \psi\xi\phi, \ \psi\xi\phi', \ \psi'\xi\phi, \ \psi'\xi\phi',$
	$\psi \xi N, \ \psi \xi \eta, \psi \xi \zeta, \ \psi' \xi \zeta, \ \psi' \xi \eta, \ \psi' \xi N, \ \psi \phi \eta, \ \psi' \phi \eta, \ \psi' \phi' \eta, \ \psi \phi' \eta, \ \psi \phi \eta, \ \psi' \phi \eta$

- Symmetry: SU(5) x ^(d)T
- Particle Content $10(Q, u^c, e^c)_L$ $\overline{5}(d^c, \ell)_L$

	T_3	T_a	\overline{F}	H_5	$H'_{\overline{5}}$	Δ_{45}	ϕ	ϕ'	ψ	ψ'	ζ	N	ξ	η
SU(5)	10	10	<u>5</u>	5	5	45	1	1	1	1	1	1	1	1
(d)T	1	2	3	1	1	1′	3	3	2'	2	1"	1'	3	1
Z_{12}	ω^5	ω^2	ω^5	ω^2	ω^2	ω^5	ω^3	ω^2	ω^6	ω^9	ω^9	ω^3	ω^{10}	ω^{10}
Z'_{12}	ω	ω^4	ω^8	ω^{10}	ω^{10}	ω^3	ω^3	ω^6	ω^7	ω^8	ω^2	ω^{11}	1	1

$$\omega = e^{i\pi/6}.$$

- additional $Z_{12} \times Z'_{12}$ symmetry:
 - * predictive model: only 9 operators allowed up to at least dim-7
 - * vacuum misalignment: neutrino sector vs charged fermion sector
 - * mass hierarchy: lighter generation masses allowed only at higher dim

Abelian subgroups of (d)T:

$$Z_3: \qquad G_{
m T} \ Z_4: \qquad G_{
m TST^2}$$

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix} \qquad TST^2 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

$$TST^2 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}$$

(d)T breaking:

 $^{(d)}T$ – invariant :

$$(d)T \longrightarrow G_{\mathrm{TST}^2}: \quad \langle \xi \rangle = \xi_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \langle \phi' \rangle = \phi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \longrightarrow$$

tri-bimaximal mixing in neutrino sector

$$\langle d \rangle_T \longrightarrow G_T : \qquad \langle \phi \rangle = \phi_0 \Lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \langle \psi \rangle = \psi_0 \Lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\langle \psi' \rangle = \psi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\langle d \rangle_T \longrightarrow G_S : \qquad \langle \zeta \rangle = \zeta_0, \quad \langle N \rangle = N_0$$

 $\langle \eta \rangle = u$

charged fermion sector

• Lagrangian: only 9 operators allowed!!

$$\mathcal{L}_{\text{Yuk}} = \mathcal{L}_{\text{TT}} + \mathcal{L}_{\text{TF}} + \mathcal{L}_{\text{FF}}$$

$$\mathcal{L}_{\text{TT}} = y_t H_5 T_3 T_3 + \frac{1}{\Lambda^2} y_{ts} H_5 T_3 T_a \psi \zeta + \frac{1}{\Lambda^2} y_c H_5 T_a T_a \phi^2 + \frac{1}{\Lambda^3} y_u H_5 T_a T_a \phi'^3$$

$$\mathcal{L}_{\text{TF}} = \frac{1}{\Lambda^2} y_b H_5' \overline{F} T_3 \phi \zeta + \frac{1}{\Lambda^3} \left[y_s \Delta_{45} \overline{F} T_a \phi \psi N + y_d H_5' \overline{F} T_a \phi^2 \psi' \right]$$

$$\mathcal{L}_{\text{FF}} = \frac{1}{M_x \Lambda} \left[\lambda_1 H_5 H_5 \overline{F} \overline{F} \xi + \lambda_2 H_5 H_5 \overline{F} \overline{F} \eta \right],$$

Neutrino Sector

• Operators:
$$\mathcal{L}_{\mathrm{FF}} = \frac{1}{M_x \Lambda} \left[\lambda_1 H_5 H_5 \overline{F} \, \overline{F} \xi + \lambda_2 H_5 H_5 \overline{F} \, \overline{F} \eta \right]$$

Symmetry breaking:

$$(d)T \longrightarrow G_{\mathrm{TST}^2}: \quad \langle \xi \rangle = \xi_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 $(d)T - \text{invariant}: \quad \langle \eta \rangle = u$

• Resulting mass matrix:

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix}$$

$$V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu} = \operatorname{diag}(u + 3\xi_0, u, -u + 3\xi_0) \frac{v_u^2}{M_x} \qquad U_{\mathrm{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Up Quark Sector

- **Operators:** $\mathcal{L}_{TT} = y_t H_5 T_3 T_3 + \frac{1}{\Lambda^2} y_{ts} H_5 T_3 T_a \psi \zeta + \frac{1}{\Lambda^2} y_c H_5 T_a T_a \phi^2 + \frac{1}{\Lambda^3} y_u H_5 T_a T_a \phi'^3$
- top mass: allowed by (d)T
- lighter family acquire masses thru operators with higher dimensionality
 - dynamical origin of mass hierarchy

symmetry breaking:
$$(d)T \longrightarrow G_{\mathrm{T}}: \qquad \langle \phi \rangle = \phi_0 \Lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad \langle \psi \rangle = \psi_0 \Lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(d)T \longrightarrow G_{\mathrm{TST}^2}:$$
 $\langle \phi' \rangle = \phi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Mass matrix:

$$M_{u} = \begin{pmatrix} i\phi_{0}^{\prime 3} & \frac{1-i}{2}\phi_{0}^{\prime 3} & 0\\ \frac{1-i}{2}\phi_{0}^{\prime 3} & \phi_{0}^{\prime 3} + (1-\frac{i}{2})\phi_{0}^{2} & y^{\prime}\psi_{0}\zeta_{0}\\ 0 & y^{\prime}\psi_{0}\zeta_{0} & 1 \end{pmatrix} y_{t}v_{u}$$

Down Quark Sector

- operators: $\mathcal{L}_{\mathrm{TF}} = \frac{1}{\Lambda^2} y_b H_{\overline{5}}' \overline{F} T_3 \phi \zeta + \frac{1}{\Lambda^3} \left[y_s \Delta_{45} \overline{F} T_a \phi \psi N + y_d H_{\overline{5}}' \overline{F} T_a \phi^2 \psi' \right]$
- \bullet generation of b-quark mass: breaking of $\,^{(d)}T$: dynamical origin for hierarchy between m_b and m_t
- lighter family acquire masses thru operators with higher dimensionality
 - dynamical origin of mass hierarchy
- consider 2nd, 3rd families only: TBM exact
- ullet Georgi-Jarlskog relations: $m_{\mu} \simeq 3 m_s ~m_d \simeq 3 m_e ~ullet$ corrections to TBM
- symmetry breaking:

$$(d)_T \longrightarrow G_T: \qquad \langle \phi \rangle = \phi_0 \Lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \langle \psi \rangle = \psi_0 \Lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad (d)_T \longrightarrow \text{nothing}: \quad \langle \psi' \rangle = \psi'_0 \Lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

mass matrix:

$$M_{d} = \begin{pmatrix} 0 & (1+i)\phi_{0}\psi'_{0} & 0 \\ -(1-i)\phi_{0}\psi'_{0} & \psi_{0}N_{0} & 0 \\ \phi_{0}\psi'_{0} & \phi_{0}\psi'_{0} & \zeta_{0} \end{pmatrix} y_{b}v_{d}\phi_{0}, \qquad M_{e} = \begin{pmatrix} 0 & -(1-i)\phi_{0}\psi'_{0} & \phi_{0}\psi'_{0} \\ (1+i)\phi_{0}\psi'_{0} & -3\psi_{0}N_{0} & \phi_{0}\psi'_{0} \\ 0 & 0 & \zeta_{0} \end{pmatrix} y_{b}v_{d}\phi_{0}$$

Quark and Lepton Mixing Matrices

CKM mixing matrix:

$$M_{u} = \begin{pmatrix} i\phi_{0}'^{3} & \frac{1-i}{2}\phi_{0}'^{3} & 0 \\ \frac{1-i}{2}\phi_{0}'^{3} & \phi_{0}'^{3} + (1-\frac{i}{2})\phi_{0}^{2} & y'\psi_{0}\zeta_{0} \\ 0 & y'\psi_{0}\zeta_{0} & 1 \end{pmatrix} y_{t}v_{u} \qquad M_{d} = \begin{pmatrix} 0 & (1+i)\phi_{0}\psi_{0}' & 0 \\ -(1-i)\phi_{0}\psi_{0}' & \psi_{0}N_{0} & 0 \\ \phi_{0}\psi_{0}' & \phi_{0}\psi_{0}' & \zeta_{0} \end{pmatrix} y_{b}v_{d}\phi_{0},$$

$$V_{cb} \qquad V_{ub}$$

$$\theta_{c} \simeq \left| \sqrt{m_{d}/m_{s}} - e^{i\alpha}\sqrt{m_{u}/m_{c}} \right| \sim \sqrt{m_{d}/m_{s}},$$

MNS matrix:

$$M_{e} = \begin{pmatrix} 0 & -(1-i)\phi_{0}\psi'_{0} & \phi_{0}\psi'_{0} \\ (1+i)\phi_{0}\psi'_{0} & -3\psi_{0}N_{0} & \phi_{0}\psi'_{0} \\ 0 & 0 & \zeta_{0} \end{pmatrix} y_{b}v_{d}\phi_{0} \qquad \theta_{12}^{e} \simeq \sqrt{\frac{m_{e}}{m_{\mu}}} \simeq \frac{1}{3}\sqrt{\frac{m_{d}}{m_{s}}} \sim \frac{1}{3}\theta_{c}$$

$$U_{\text{MNS}} = V_{e,L}^{\dagger} U_{\text{TBM}} = \begin{pmatrix} 1 & -\theta_c/3 & * \\ \theta_c/3 & 1 & * \\ * & * & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

$$\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot, TBM} - \frac{1}{2} \theta_c \cos \beta$$
 $\theta_{13} \simeq \theta_c / 3\sqrt{2}$

$$\theta_{13} \simeq \theta_c/3\sqrt{2}$$

leptonic CPV

Numerical Results

- **Experimentally:** $m_u: m_c: m_t = \epsilon_u^2: \epsilon_u: 1, \quad m_d: m_s: m_b = \epsilon_d^2: \epsilon_d: 1$ $\epsilon_d \simeq (1/20) = 0.05$ $\epsilon_u \simeq (1/200) = 0.005$
- **Model Parameters:**

$$M_u = \begin{pmatrix} ig & rac{1-i}{2}g & 0 \ rac{1-i}{2}g & g+h & k \ 0 & k & 1 \end{pmatrix} y_t v_u$$
 $k \equiv y' \psi_0 \zeta_0 = -0.032$ $h \equiv \psi_0^2 = 0.0053$ charged fermion $g \equiv \phi_0'^3 = -2.25 \times 10^{-5}$ sector

$$\frac{M_d}{y_b v_d \phi_0 \zeta_0} = \begin{pmatrix} 0 & (1+i)b & 0 \\ -(1-i)b & c & 0 \\ b & b & 1 \end{pmatrix} \qquad \begin{aligned}
y_b \phi_0 \zeta_0 &\simeq m_b/m_t \simeq (0.011) \\
c &\equiv \psi_0 N_0/\zeta_0 = 0.0474 \\
b &\equiv \phi_0 \psi_0'/\zeta_0 = 0.00789
\end{aligned}$$

$$k \equiv y'\psi_0\zeta_0 = -0.032$$

 $h \equiv \psi_0^2 = 0.0053$
 $g \equiv \phi_0'^3 = -2.25 \times 10^{-5}$

$$y_b \phi_0 \zeta_0 \simeq m_b/m_t \simeq (0.011$$

 $c \equiv \psi_0 N_0/\zeta_0 = 0.0474$
 $b \equiv \phi_0 \psi_0'/\zeta_0 = 0.00789$

Mixing Matrices:

$$|V_{\text{CKM}}| = \begin{pmatrix} 0.976 & 0.217 & 0.00778 \\ 0.216 & 0.975 & 0.040 \\ 0.015 & 0.0378 & 0.999 \end{pmatrix}$$

$$|U_{\text{MNS}}| = |V_{e,L}^{\dagger} U_{\text{TBM}}| = \begin{pmatrix} 0.838 & 0.545 & 0.0550 \\ 0.364 & 0.608 & 0.706 \\ 0.409 & 0.578 & 0.706 \end{pmatrix}$$

cos (beta)= 2/3 : best fit values

neutrino masses:

$$u = -1.87 \times 10^{-2}$$
, $\xi_0 = 1.15 \times 10^{-2}$, $M_x \sim 10^{14} \text{ GeV}$

2 parameters in neutrino sector

Conclusions

- SU(5) x ^(d)T symmetry: tri-bimaximal lepton mixing & realistic CKM matrix
- $Z_{12} \times Z_{12}$ ' symmetry: only 9 operators present (only 9 parameters in Yukawa sector)
 - ★ forbid proton decay
 - ★ likely linked to orbifold compactification
- dynamical origin of mass hierarchy (including m_b vs m_t)
- interesting sum rules:

$$\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot, TBM} - \frac{1}{2} \theta_c \cos \beta$$

$$\theta_{13} \simeq \theta_c/3\sqrt{2} \sim 0.05$$

could give right amount to account for discrepancy bt exp best fit value and TBM prediction